The Crystal and Molecular Structure of 2,7-Dibromo-4,5-bis-(2-pyridyl)phenanthrene-3,6-diol

By Douglas L. Smith and Eileen K. Barrett
Research Laboratories, Eastman Kodak Company, Rochester, New York 14650, U.S.A.

(Received 3 December 1969)

Abstract

The crystal structure of 2,7-dibromo-4,5-bis-(2-pyridyl)phenanthrene-3,6-diol has been determined from single-crystal X-ray intensity data collected with an automated diffractometer. The crystals are monoclinic, space group $I 2 / a$, with four molecules in a unit cell of dimensions $a=13.860$ (1), $b=10.869$ (1), $c=12.923$ (1) $\AA, \beta=94.02(1)^{\circ}$. The structure was solved by the heavy-atom technique and refined by full-matrix least squares. Hydrogen atoms were located and refined. The final value of the discrepancy factor is $R=0.028$. As a result of intramolecular overcrowding the molecule is severely distorted from a planar configuration. However, the bending is distributed over the entire molecule so that the trigonal symmetry of the bonds about any particular carbon atom is not greatly disturbed. The overcrowding has caused some bonds to be lengthened and there is a nonbonded intramolecular contact of $2.8 \AA$.

Introduction

In the course of his studies of inverse electron demand in Diels-Alder reactions, Fields has synthesized a number of novel overcrowded polynuclear aromatic compounds (Fields, 1969; Fields, Regan, \& Dignan, 1968). Among these compounds are the 2,7-disubstituted-4,5-bis-(2-pyridyl)phenanthrene-3,6-diols:

It is evident that these molecules are severely overcrowded and that the steric repulsions of the pyridyl groups must cause the normally planar phenanthrene moiety to be considerably distorted. With molecular models one can manipulate the twists of the pyridyl groups and the distortions of the phenanthrene nucleus to obtain some feeling for the molecular shape. However, we believed a complete crystal structure analysis was necessary to define unambiguously the stereochemistry of these compounds. This report describes the three-dimensional X-ray crystal structure determination of the bromine-substituted compound ($\mathrm{R}=\mathrm{Br}$).

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br}_{2}$, M.W. $522 \cdot 21$, m.p. $290^{\circ} \mathrm{C}$ (decomp.). 2,7-Dibromo-4,5-bis-(2-pyridyl)phenanthrene-3,6-diol. Yellow, long square prismatic (a) crystals.
Monoclinic ($\mathrm{Cu} \mathrm{K} \mathrm{\alpha}_{1}=1.5405 \AA$)

$$
\begin{array}{ll}
a=13.860 \pm 0.001 \AA & b=10.869 \pm 0.001 \AA \\
c=12.923 \pm 0.001 \AA & \beta=94.02 \pm 0.01^{\circ} .
\end{array}
$$

Volume of unit cell, $1942 \cdot 1 \pm 0 \cdot 3 \AA^{3}$.

Density, calculated $(Z=4) \quad 1.786 \mathrm{g.cm}^{-3}$ measured (flotation) $1.82 \mathrm{~g} . \mathrm{cm}^{-3}$.
Linear absorption coefficient, $\mu=62 \mathrm{~cm}^{-1}(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})$.
Total number of electrons per unit cell, $F(000)=1032$.
Absent spectra: $h k l$ for $h+k+l$ odd, $h 0 l$ for h odd.
Space group, $I 2 / a\left(C_{2 h}^{6}\right)$.
General positions: $\left(0,0,0 ; \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) \pm\left(x, y, z ; \frac{1}{2}+x,-y, z\right)$

Experimental

Samples of 2,7-unsubstituted ($\mathrm{R}=\mathrm{H}$), 2,7-dimethyl ($\mathrm{R}=\mathrm{CH}_{3}$), and 2,7-dibromo ($\mathrm{R}=\mathrm{Br}$) derivatives were supplied to us by Dr D. L. Fields of our Laboratories. Suitable crystals of the unsubstituted compound were not readily obtained and precession photographs of the dimethyl derivative clearly showed the crystals to be disordered. Good crystals of the dibromo compound were obtained by slowly cooling to room temperature a hot, saturated solution of the material in dimethylformamide. Space group extinctions and preliminary lattice dimensions were obtained from precession photographs.

A small square prismatic crystal $0.08 \times 0.08 \times 0.18$ mm , attached to a thin glass rod with Canada balsam, was chosen for intensity-data collection on an automatic Picker four-circle goniostat. Narrow source, open-counter ω scans (Furnas, 1957) through several reflections showed the mosaicity of the crystal to be approximately $0 \cdot 15^{\circ}$. Twenty-nine reflections at moderately high Bragg angles ($\mathrm{Cu} K \alpha_{1}$ radiation) were accurately centered through very narrow vertical and horizontal slits at a take-off angle of $0 \cdot 5^{\circ}$. These observations were used as input to the computer program PICK2 (Ibers \& Hamilton, 1966) which refined the cell and orientation parameters by the method of least squares and generated the cards to control the automated goniostat.

Intensity data were collected with Ni -filtered Cu radiation at a take-off angle of $2 \cdot 5^{\circ}$. A scintillation de-
tector was used and the pulse-height analyzer was set for an approximately 90 per cent window. All 1659 unique reflections for $2 \theta<130^{\circ}$ were measured by the $\theta-2 \theta$ scan technique (Furnas, 1957) at a 2θ scan rate of $1 \cdot 0^{\circ} \cdot \min ^{-1}$ The scan range varied from $1 \cdot 1^{\circ}$ at low 2θ to $2 \cdot 2^{\circ}$ at high 2θ. Stationary-crystal stationary-counter background counts were taken for 40 sec at each end of the scan. For count rates above 13,000 c.p.s. brass attenuators ($\sim 68 \%$ attenuation) were automatically inserted in the diffracted beam by the Picker system. To check electronic and crystal stability during the period of data collection, the intensity of the $63 \overline{1}$ reflection was measured every 50 th reflection. A small ($\sim 2 \%$) systematic decrease was observed in the intensity of this standard reflection over the period of data collection.

The reduction of the intensity data to structure amplitudes was accomplished with the computer program $D A C O R$ (Smith, 1966). The background for a reflection was approximated by a straight line between the two measured background points. The intensities, corrected for background, were scaled by the standard intensities to correct for the slight systematic decrease noted in these intensities. Lorentz and polarization corrections were made but absorption was neglected. We estimate the maximum error in $\left|F_{o}\right|$ caused by absorption to be $\pm 25 \%$, but most reflections have far smaller errors. Absorption errors are known to affect thermal parameters much more than positional parameters (Srivastava \& Lingafelter, 1966) and for our crystal, which is elongated along a, should cause B_{11} to be systematically larger than B_{22} and B_{33}. The final parameters shown in Table 4 show this to be the case; the average value of B_{11} is $3.83 \AA^{2}$, of B_{22} is $2.75 \AA^{2}$, and of B_{33} is
$2.73 \AA^{2}$. Standard deviations $\sigma(I)$ were based on counting statistics and the estimated error of scaling and were corrected to $\sigma(F)$. Of the 1659 measured reflections, 195 were less than $2 \sigma(I)$ and were considered unobserved. The intensities of these unobserved reflections were then set equal to $2 \sigma(I)$ and corrected to structure amplitudes, $F_{\text {lim }}$.

Determination and refinement of the structure

Scale and overall temperature factors, determined from a least-squares fit of a Wilson (1942) plot, were applied to the structure factors to place them on an absolute scale and to correct them for thermal motion. The computer program ESORT (Smith, 1966) was then used to compute (Hauptman \& Karle, 1953) the normalized structure factor magnitudes, $\left|E_{\mathbf{H}}\right|$, and the statistical averages and distribution shown in Table 1. Unobserved reflections were included in the Wilson plot and the statistical averages as $E_{\mathrm{Iim}}^{2} / 3$ (Hamilton, 1955).

Table 1. Statistical averages and distributions of
normalized structure amplitudes

		Theoretical	
	Experimental	Centric	Acentric
$\langle \| E\rangle$	0.809	0.798	0.886
$\langle \| E^{2}{ }^{2}-1\| \rangle$	0.941	0.968	0.736
$\left\langle E^{2}\right\rangle$	0.998	1.000	1.000
$\|E\|>3.0$	0.2%	0.3%	0.01%
>2.5	1.2	1.2	0.2
>2.0	4.2	4.6	1.8
>1.8	6.7	7.2	3.9

The data in Table 1 strongly indicate that the probable space group is the centric one, $I 2 / a$, rather than

Fig. 1. Atomic labeling and interatomic distances and angles. For clarity, the $\mathrm{C}(5)-\mathrm{C}\left(5^{\prime}\right)$ and $\mathrm{C}(7)-\mathrm{C}\left(7^{\prime}\right)$ bonds are not drawn to scale.
the acentric group $I a$. Since there are only four molecules per unit cell, the molecules must possess special crystallographic symmetry or be statistically disordered. No evidence of disorder was found on the precession photographs. The molecules cannot contain an inversion center and therefore must lie on the twofold axes. The distribution of the vectors in a three-dimensional sharpened Patterson map (coefficients $E^{2}-1$) verified the centric space group and the twofold molecular symmetry. Coordinates for the bromine atom were readily obtained from the Patterson map. Two cycles of isotropic least-squares refinement of the scale factor and the bromine parameters resulted in an agreement index $R_{1}=\sum| | F_{o}\left|-\left|F_{c}^{*}\right|\right| / \Sigma\left|F_{o}\right|=0 \cdot 50$. A threedimensional electron density map, phased by the bromine atom, clearly revealed the positions of the other fourteen non-hydrogen atoms.
The structure was refined by full-matrix least-squares with the use of all observed reflections plus those unobserved reflections for which $\left|F_{c}^{*}\right|>F_{\text {lim }}$. The quantity minimized was $\sum w\left(\left|F_{o}\right|-\left|F_{c}^{*}\right|\right)^{2}$, where

$$
\begin{aligned}
& F_{c}^{*}=K F_{c}\left\{1+g\left[\begin{array}{c}
1+\cos ^{4} 20 \\
\left(1+\cos ^{2} 2 \theta\right) \sin 20
\end{array}\right] F_{c}^{2}\right\}^{-1 / 2} \\
& =K F_{c} / G,
\end{aligned}
$$

in which K is the scale factor, g is the extinction parameter (Zachariasen, 1963; Larson, 1967), and F_{c} is the usual calculated structure factor. The weights were defined as

$$
w=\left[\sigma^{2}\left(F_{o}\right)+\left(r F_{o}\right)^{2}+s\left(F_{c}-F_{c}^{*}\right)^{2}\right]^{-1},
$$

where r and s were chosen to make the averages of
$\sum w\left(F_{o}-F_{c}^{*}\right)^{2}$ constant for groups of increasing F_{o} values (Cruickshank, 1965).

Three cycles of refinement with isotropic temperature factors, $g=s=0, r=0.04$, and carbon scattering factors for all atoms except bromine and oxygen yielded $R_{1}=$ $0 \cdot 16$ and enabled us to identify the nitrogen atom by its low temperature factor. Then, two cycles with anisotropic temperature factors, $g=s=0$, and $r=0.04$ reduced R_{1} to 0.046 . A difference electron-density map clearly showed the seven hydrogen atoms, as well as a considerable negative region around the bromine atom due to the neglect of anomalous scattering effects. Refinement was resumed with isotropic temperature factors for the hydrogen atoms and both the real ($\Delta f^{\prime}=$ -0.96) and imaginary ($4 f^{\prime \prime}=1.46$) parts of the anomalous scattering factors applied to bromine. Two cycles in which the hydrogen parameters were not varied, $g=s=0$, and $r=0.04$ resulted in $R_{1}=0.034$.

Up to this point g had been held equal to zero but it was obvious that the largest structure factors were affected by extinction. The 26 largest structure amplitudes were used in four cycles of refinement in which only g was allowed to vary and $r=s=0$. These were followed by three cycles in which only the scale factor and the hydrogen parameters were varied, $r=0 \cdot 02$, and $s=0.01$. The refinement was concluded with two cycles in which all parameters except g were varied, $r=0.02$, and $s=0$. For the last cycle of refinement thirteen of the 164 parameters shifted more than $0 \cdot 1 \sigma$ and the maximum shift was $0 \cdot 28 \sigma$. The final agreement indices for the 1464 observed reflections plus the 35 unobserved reflections with $\left|F_{c}^{*}\right|>F_{1 \mathrm{im}}$ are $R_{1}=0.028$ and $R_{2}=\left(\sum w\right.$ $\left.\left(\left|F_{o}\right|-\left|F_{c}^{*}\right|\right)^{2} / \sum w F_{o}^{2}\right)^{1 / 2}=0.039$. The standard deviation of an observation of unit weight is $1 \cdot 40$. Of the 35 re-

Table 2. Final atomic parameters with their estimated standard deviations (in parentheses)

	-	ν	z	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
Br	$0 \cdot 48900$ (3)	$0 \cdot 29935$ (3)	$0 \cdot 34986$ (3)	$4 \cdot 93$ (2)	$4 \cdot 91$ (2)	$3 \cdot 58$ (2)	0.64 (1)	-1.24 (1)	$1 \cdot 13$ (1)
O	$0 \cdot 38666$ (16)	$0 \cdot 51661$ (19)	$0 \cdot 25626$ (16)	$4 \cdot 65$ (10)	$2 \cdot 88$ (9)	$3 \cdot 17$ (9)	$0 \cdot 29$ (8)	-1.44 (7)	-0.30 (7)
N	$0 \cdot 27296$ (16)	$0 \cdot 64121$ (19)	$0 \cdot 12728$ (16)	$3 \cdot 32$ (9)	2.21 (9)	$2 \cdot 35$ (9)	-0.08 (7)	-0.09 (7)	-0.10 (7)
C(1)	$0 \cdot 37395$ (22)	$0 \cdot 19715$ (25)	$0 \cdot 18206$ (23)	$4 \cdot 07$ (13)	$2 \cdot 68$ (12)	$3 \cdot 21$ (12)	0.56 (10)	0.28 (10)	0.93 (9)
C(2)	$0 \cdot 39937$ (21)	$0 \cdot 30270$ (25)	$0 \cdot 23298$ (21)	$3 \cdot 64$ (12)	3.41 (13)	$2 \cdot 45$ (11)	0.44 (10)	-0.08 (9)	0.73 (9)
C(3)	$0 \cdot 35931$ (19)	$0 \cdot 41633$ (24)	$0 \cdot 20063$ (19)	$3 \cdot 18$ (11)	2.72 (11)	$2 \cdot 28$ (10)	0.05 (9)	0.08 (8)	$0 \cdot 18$ (8)
C(4)	$0 \cdot 29136$ (18)	$0 \cdot 42083$ (22)	$0 \cdot 11552$ (18)	$2 \cdot 88$ (11)	$2 \cdot 14$ (10)	2.09 (9)	-0.06 (8)	0.06 (8)	$0 \cdot 13$ (8)
C(5)	$0 \cdot 27576$ (19)	$0 \cdot 31389$ (22)	0.05172 (19)	3.04 (11)	1.96 (10)	2.48 (10)	0.03 (8)	0.35 (9)	$0 \cdot 18$ (8)
C(6)	$0 \cdot 31157$ (22)	$0 \cdot 20016$ (23)	$0 \cdot 09098$ (22)	$4 \cdot 24$ (13)	2.18 (11)	$2 \cdot 97$ (11)	$0 \cdot 14$ (9)	0.36 (10)	0.48 (8)
C(7)	$0 \cdot 28224$ (26)	0.08774 (27)	$0 \cdot 04107$ (25)	6.08 (18)	$1 \cdot 80$ (11)	4.39 (14)	$0 \cdot 28$ (11)	$0 \cdot 24$ (12)	0.56 (10)
C(8)	$0 \cdot 22972$ (18)	0.53257 (22)	$0 \cdot 10489$ (17)	3.05 (10)	$2 \cdot 16$ (9)	1.62 (8)	-0.03 (8)	0.07 (8)	-0.08 (7)
C(9)	$0 \cdot 12986$ (18)	$0 \cdot 52464$ (25)	$0 \cdot 08254$ (19)	$2 \cdot 82$ (10)	$2 \cdot 80$ (11)	2.25 (10)	-0.16 (9)	$0 \cdot 32$ (8)	-0.31 (8)
C(10)	$0 \cdot 07601$ (21)	$0 \cdot 63089$ (30)	0.07744 (21)	3.03 (12)	4.25 (15)	2.75 (11)	0.58 (10)	0.06 (9)	-0.49 (10)
C(11)	$0 \cdot 12149$ (22)	0.74357 (29)	0.09556 (21)	$4 \cdot 19$ (14)	3.05 (12)	2.86 (11)	1.21 (11)	-0.15 (10)	-0.41 (10)
C(12)	$0 \cdot 21898$ (22)	0.74325 (25)	$0 \cdot 12257$ (20)	$4 \cdot 33$ (13)	2.08 (10)	$2 \cdot 53$ (11)	$0 \cdot 16$ (10)	$-0 \cdot 10(9)$	-0.22 (9)
H(1)	0.3651 (24)	0.5736 (32)	0.2212 (27)	1.71 (72)					
$\mathrm{H}(2)$	$0 \cdot 4024$ (24)	$0 \cdot 1183$ (35)	$0 \cdot 2035$ (26)	2.42 (73)					
H(3)	$0 \cdot 3062$ (22)	0.0152 (31)	0.0705 (25)	$1 \cdot 83$ (67)					
H(4)	$0 \cdot 1042$ (21)	$0 \cdot 4409$ (29)	0.0760 (23)	$1 \cdot 19$ (59)					
$\mathrm{H}(5)$	0.0086 (25)	0.6298 (33)	0.0612 (26)	$2 \cdot 47$ (73)					
H(6)	0.0904 (22)	0.8154 (29)	0.0937 (25)	1.31 (64)					
H(7)	$0 \cdot 2544$ (23)	0.8208 (27)	$0 \cdot 1342$ (25)	$1 \cdot 37$ (63)					

flections with $\left|F_{c}^{*}\right|>F_{\text {lim }}$, none had $\left|F_{c}^{*}\right|>1.7 F_{\text {lim }}$. A final difference Fourier synthesis contained values between -0.48 and $+0.28 \mathrm{e} . \AA^{-3}$ with the greatest detail near the bromine atom. If one excludes that region, the range was from -0.19 to $+0.22 \mathrm{e} . \AA^{-3}$ and verified the structure.

The final positional and thermal parameters, with standard deviations estimated from the least-squares process, are given in Table 2. The average standard deviations of the positional parameters expressed in \AA are 0.0004 for bromine, 0.0021 for oxygen and nitrogen, 0.0027 for carbon, and 0.033 for hydrogen. Two other parameters that were refined are the scale factor,
$K=0.980$, and the extinction coefficient, $g=1.40 \times 10^{-6}$.
The final values of the observed and calculated structure amplitudes are compared in Table 3.

The Fourier computer program used in this analysis was obtained from Professor J. Trotter (Trotter, 1965). The full-matrix least-squares refinement utilized a modification of the Busing, Martin \& Levy (1962) program ORFLS. The usual atomic scattering factors for all atoms were obtained from International Tables for X-ray Crystallography (1962) and the anomalous scattering components for bromine from Cromer (1965). All computations were performed on an IBM 360 computer.

Table 3. Observed and calculated structure amplitudes
The column headings are $h, l, 10 G\left|F_{o}\right| / K$, and $10\left|F_{c}\right|$. An asterisk designates 'less than'.

 -هロ

Table 3 (cont.)

[^0]込

this overcrowded molecule. The distortion is distributed over the entire framework of the molecule such that the trigonal symmetry of the bonds about any particular carbon atom is not greatly disturbed. No major segment of the molecule is truly planar, yet all rings are approximately planar. The equations of least-squares planes for various parts of the molecule and the deviations of the atoms from these planes are given in Table 4. The largest atomic displacements from the mean plane of the phenanthrene moiety (A, Table 4) are 0.34 and $0.17 \AA$. When one considers the individual rings of the phenanthrene part, one finds the central ring (B, Table 4) is planar to $0.07 \AA$ and the outer rings (C, Table 4) are planar to $0.10 \AA$. The angles between the plane normals are 9° for the central and outer rings and 18° for the two outer rings. Fig. 4(a), a view along

Fig. 2. Stereoscopic view of the molecule showing the 50% probability thermal ellipsoids.
the $\mathrm{C}(5)-\mathrm{C}\left(5^{\prime}\right)$ bond, shows the approximately 20° deviation from planarity about this bond.

The most planar section of the molecule is the pyridyl group (D, Table 4) with a maximum atomic displacement from the plane of $0.025 \AA$. However, the displacements are systematic and the pyridyl group is slightly bent at $\mathrm{C}(8)$ and $\mathrm{C}(11)$ into two planes ($E, F, \mathrm{~T}$ able 4) whose normals make an angle of 3.3°. As is evident from Fig. 3 the pyridyl group and the end ring of the
phenanthrene are far from coplanar. The normals to these two planes (D, B, Table 4) make an angle of 43° with each other. This is composed of a 40° rotation of the pyridyl group about the $C(4)-C(8)$ bond and a 17° bend of the $C(4)-C(8)$ bond out of the plane of the end ring. The distribution of bonds about the $\mathrm{C}(4)-\mathrm{C}(8)$ bond is shown in Fig. 4(b).
Skancke (1965) has published a semi-empirical molecular orbital study of phenanthrene within the Pariser-

Table 4. Equations of least-squares planes and distances (\AA) of atoms from these planes
X, Y and Z are expressed in \AA units relative to the Cartesian axial system defined by the a, b and c^{*} axes. The planes were calculated by the method of Schomaker, Waser, Marsh \& Bergman (1959) as nodified by Blow (1960).

Plane A	$0.8650 X \quad-0.5018 Z=$	2.9970
B	$0.8194 X+0.1540 Y-0.5521 Z=$	$3 \cdot 1788$
C	$0.8437 X \quad-0.5368 Z=$	2.9234
D	$0.2273 X+0.0961 Y-0.9691 Z=$	-0.0764
E	$0.2041 X+0.0804 Y-0.9757 Z=$	-0.2251
F	$0.2512 X+0.1135 Y-0.9613 Z=$	$0 \cdot 1337$

	Plane A			Plane B		Plane C	
C(1)	-0.166	$\mathrm{C}\left(1^{\prime}\right)$	$0 \cdot 166$	$\mathrm{C}(1)$	0.033	C(5)	0.096
C(2)	-0.101	$\mathrm{C}\left(2^{\prime}\right)$	$0 \cdot 101$	C(2)	-0.033	C(6)	-0.021
C(3)	$0 \cdot 145$	C(3')	-0.145	C(3)	-0.022	C(7)	-0.061
C(4)	0.342	$\mathrm{C}\left(4^{\prime}\right)$	-0.342	C(4)	0.073	$\mathrm{C}\left(7^{\prime}\right)$	0.061
C(5)	0.066	C(5)	-0.066	C(5)	-0.072	C(6)	0.021
C(6)	-0.078	$\mathrm{C}\left(6^{\prime}\right)$	0.078	C(6)	0.020	$\mathrm{C}\left(5^{\prime}\right)$	-0.096
C(7)	-0.089	$\mathrm{C}\left(7^{\prime}\right)$	0.089	* $\mathrm{C}\left(5^{\prime}\right)$	-0.300	* $\mathrm{C}(1)$	-0.050
${ }^{*} \mathrm{Br}$	-0.328			*C(7)	0.149	* C(4)	0.404
* O	$0 \cdot 220$			* $\mathrm{C}(8)$	0.503	* $\mathrm{H}(3)$	-0.116
*C(8)	1.004			*O	-0.063		
* $\mathrm{H}(2)$	-0.351			* Br	-0.126		
* H (3)	-0.163			* H (2)	0.010		
Plane D				Plane E		Plane F	
N	0.010	*C(4)	0.033	C(8)	-0.001	N	-0.001
C(8)	-0.025	${ }^{*} \mathrm{C}(5)$	-0.616	C(9)	0.003	C(8)	0.001
C(9)	0.015	${ }^{*} \mathrm{H}(4)$	$0 \cdot 100$	C(10)	-0.003	$\mathrm{C}(11)$	-0.001
$\mathrm{C}(10)$	0.008	*H(5)	0.015	C(11)	0.001	$\mathrm{C}(12)$	0.001
C(11)	-0.023	*H(6)	-0.023	*N	0.067	* C (9)	0.076
C(12)	0.014	* H (7)	-0.032	* C(12)	0.071	* C(10)	0.068
* $\mathrm{C}(3)$	0.905			*C(4)	0.058	* C(4)	0.058

* Not included in the calculation of the plane.

Fig. 3. Stereoscopic view of the_molecule along the twofold symmetry axis.

Parr-Pople approximation. Table 5 is a comparison of the phenanthrene bond lengths observed in our structure with the distances calculated by Skancke and with those observed by Trotter (1963) in the structure determination of phenanthrene itself. The agreement of our distances with the predicted values is better than $0.03 \AA$ for all bonds, but the differences are systematic in the

Fig.4. Newman diagrams looking along the $C(5)-C\left(5^{\prime}\right)$ and $C(4)-C(8)$ bonds.

Fig. 5. Projection of the molecule normal to one of the pyridyl
direction expected from the overcrowding. The bonds in the portion of the molecule overcrowded by bulky substituents, especially $\mathrm{C}(5)-\mathrm{C}\left(5^{\prime}\right)$, are lengthened and the bonds in the uncrowded portion of the molecule, especially $C(7)-C\left(7^{\prime}\right)$, are shortened from Skancke's calculated values. The $C(5)-C\left(5^{\prime}\right)$ bond $(1.471 \AA)$ is close to the $1-488 \AA$ expected for a formal $s p^{2}-s p^{2}$ single bond and the $\mathrm{C}(7)-\mathrm{C}\left(7^{\prime}\right)$ bond $(1.339 \AA)$ is equivalent to the value $1.338 \AA$ expected for a double bond (Dewar \& Schmeising, 1960). The overcrowding and consequent distortion has apparently considerably altered the conjugation of the central ring of the phenanthrene moiety.

The C-O separation ($1.346 \AA$) compares well with the value $1.34 \AA$ tabulated by Lide (1962), who concluded that delocalization contributes significantly to the shortening of aromatic $\mathrm{C}-\mathrm{O}$ single bonds compared with aliphatic C- -O bonds. The $\mathrm{C}-\mathrm{Br}$ bond ($1.888 \AA$) compares favourably with the average distance of $1.891 \AA$ found recently in $2,4,6$-tribromoaniline (Christensen \& Strømme, 1969). This is $0.05 \AA$ shorter than the bond lengths found in aliphatic bromides (Sutton, 1965) and can be accounted for by the difference in radius between tetrahedral and trigonal carbon atoms. Thus the bromine atom does not appreciably enter into conjugation with the aromatic system, in agreement with the findings of Bersohn (1954). Likewise the $\mathrm{C}(4)-\mathrm{C}(8)$ bond ($1.486 \AA$) is a normal single bond (Dewar \& Schmeising, 1960), indicating that the pyridyl group also does not enter into conjugation appreciably with the phenanthrene. In the pyridyl ring average values of the distances $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ and the angles $\mathrm{C}-\mathrm{N}-\mathrm{C}, \mathrm{N}-\mathrm{C}-\mathrm{C}$, and $\mathrm{C}-\mathrm{C}-\mathrm{C}$ are $1 \cdot 383,1 \cdot 342 \AA, 118 \cdot 6$, 122.4 and 118.8° respectively. These agree very well with the values $1.388,1 \cdot 342 \AA, 118 \cdot 9,122 \cdot 1$, and $118 \cdot 9^{\circ}$ found for 1,2-di-2-pyridylethenediol-1,2 (Ashida, Hirokawa \& Okaya, 1965) and $1 \cdot 383,1 \cdot 346 \AA, 117 \cdot 0,123 \cdot 5$, and 118.7° for 2-($2^{\prime}, 4^{\prime}$-dinitrobenzyl) pyridine (Seff \& Trueblood, 1968). Systematic variations of as much as $0.025 \AA$ in the pyridyl C-C distances and in the pyridyl angles are also remarkably alike in the three compounds. The pyridyl ring is bonded to the hydroxyl group by a strong intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond with dimensions very similar to the $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond found in 1,2-di-2-pyridylethenediol-1,2 (Ashida, Hirokawa \& Okaya, 1965).

Table 5. Comparison of phenanthrene bond lengths (\AA)

		This work			
Bond	Skancke	Obs.	$10^{3} . \Delta$	Trotter	
C(1)-C(2)	$E-F$	1.376	1.357	-19	1.381
C(2)-C(3)	$D-E$	1.400	1.406	6	1.398
C(3)-C(4)	$C-D$	1.380	1.398	18	1.383
C(4)-C(5)	$B-C$	1.421	1.433	12	1.405
C(5)-C(6)	$B-G$	1.404	1.413	9	1.404
$C(6)-C(1)$	$F-G$	1.428	1.411	-17	1.457
C(6)-C(7)	$G-H$	1.431	1.427	-4	1.390
C(5)-C(5)	$A-B$	1.443	1.471	28	1.448
C(7)-C(7)	$H-I$	1.372	1.339	-23	1.372
Av. σ			0.004		0.014

The six C-H distances average $0.95 \AA$ and $\mathrm{O}-\mathrm{H}$ is $0.81 \AA$, both more than $0 \cdot 1 \AA$ shorter than accepted values but both agreeing with typical X-ray results.

Fig. 5 shows that the pyridyl rings are partially shifted past each other. The closest contact between the rings, $\mathrm{C}(8) \cdots \mathrm{C}\left(8^{\prime}\right)$, is extremely short at $2 \cdot 807 \AA$. The two pyridyl rings are not parallel but are inclined 11° to each other so the other contacts such as $\mathrm{C}(12) \cdots \mathrm{C}\left(12^{\prime}\right)(3 \cdot 340 \AA)$ are more usual.

The molecular geometry in our compound is strikingly similar to that found in 3,4-5,6-dibenzophenanthrene, whose approximate structure has been determined (McIntosh, Robertson \& Vand, 1954). The two compounds contain a similar combination of fused rings and overlapping atoms and exhibit very nearly the same molecular distortions. These distortions are in accord with the conclusions of Coulson \& Senent (1955) and of Ferguson \& Robertson (1963), who said that relief from overcrowding is usually obtained by distortions that are well spaced over the rigid framework of the molecule and that it is relatively easy to build up large displacements in these molecules by a series of quite small distortions at each carbon atom.
The molecular packing in the crystal is shown schematically in Fig. 6. There are no unusually short intermolecular contacts.

References

Ashida, T., Hirokawa, S. \& Okaya, Y. (1965). Acta Cryst. 18, 122.
Bersohn, R. (1954). J. Chem. Phys. 22, 2078.
Blow, D. M. (1960). Acta Cryst. 13, 168.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS, A FORTRAN Crystallographic Least-Squares Program. ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Christensen, A. T. \& Strømme, K. O. (1969). Acta Cryst. B25, 657.
Coulson, C. A. \& Senent, S. (1955). J. Chem. Soc. p. 1819.
Cromer, D. T. (1965). Acta Cryst. 18, 17.
Cruickshank, D. W. J. (1965). In Computing Methods in Crystallography. Ed. J. S. Rollett. Oxford: Pergamon Press.
Darlow, S. F. (1960). Acta Cryst. 13, 683.
Dewar, M. J. S. \& Schmeising, H. N. (1960). Tetrahedron, 11, 96.
Ferguson, G. \& Robertson, J. M. (1963). Advances in Physical Organic Chemistry, 1, 203.
Fields, D. L. (1969). J. Org. Chem. Submitted for publication.
Fields, D. L., Regan, T. H. \& Dignan, J. C. (1968). J. Org. Chem. 33, 390.
Furnas, T. C. (1957). Single Crystal Orienter Instruction Manual. Milwaukee,: General Electric Co.
Hamilton, W. C. (1955). Acta Cryst. 8, 185.

Fig. 6. [010] view of four unit-cells schematically showing the packing of the molecules. The lines represent intramolecular $\mathrm{Br}-\mathrm{Br}$ vectors. Molecules with pyridyl groups oriented up or down are represented by solid or dashed lines respectively. The thick lines represent molecules located with $0<y<1$, the thin lines those with $-\frac{1}{2}<y<\frac{1}{2}$.

Hauptman, H. \& Karle, J. (1953). Solution of the Phase Problem. I. The Centrosymmetric Crystal. Monograph No. 3, American Crystallographic Association.
Ibers, J. A. \& Hamilton, W. C. (1966). Private communication.
International Tables for X-ray Crystallography (1962). Vol. III, p. 202. Birmingham: Kynoch Press.
Johnson, C. K. (1965). ORTEP, A FORTRAN Thermal Ellipsoid Plot Program for Crystal Structure Illustrations. ORNL-3794, Revised, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Larson, A. C. (1967). Acta Cryst. 23, 664.
Lide, D. R. (1962). Tetrahedron, 17, 125.
McIntosh, A. O., Robertson, J. M. \& Vand, V. (1954). J. Chem. Soc. p. 1661.

Schomaker, V., Waser, J., Marsh, R. E. \& Bergman, G. (1959). Acta Cryst. 12, 600.

Seff, K. \& Trueblood, K. N. (1968). Acta Cryst. B24, 1406.
Skancke, P. N. (1965). Acta Chem. Scand. 19, 401.
Smith, D. L. (1966). Unpublished program.
Srivastava, R. C. \& Lingafelter, E. C. (1966). Acta Cryst. 20, 918.
Sutton, L. E. (1965). Ed. Interatomic Distances and Configurations in Molecules and Ions, Supplement. Special Publication No. 18. London: The Chemical Society.
Trotter, J. (1963). Acta Cryst. 16, 605.
Trotier, J. (1965). Private communication.
Wilson, A. J. C. (1942). Nature, Lond. 150, 151.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139.

[^0]:

